
© 2010 Bennett, McRobb and Farmer 1

Requirements Analysis 2:
Realizing Use Cases

Based on Chapter 7 of Bennett,
McRobb and Farmer:

Object Oriented Systems Analysis
and Design Using UML, (4th Edition),

McGraw Hill, 2010.

2© 2010 Bennett, McRobb and Farmer

In This Lecture You Will Learn:

• What is meant by use case realization

• Two approaches for realizing use cases:

– Robustness analysis combined with
communication diagrams

– Class-Responsibility-Collaboration (CRC)

• How to combine use case class diagrams
into a single analysis class model

3© 2010 Bennett, McRobb and Farmer

From Requirements to Classes

• Requirements (use cases) are usually
expressed in user language

• Use cases are units of development, but
they are not structured like software

• The software we will implement consists of
classes

• We need a way to translate requirements
into classes

4© 2010 Bennett, McRobb and Farmer

Goal of Realization

• An analysis class diagram is only an
interim product

• This in turn will be realized as a design
class diagram

• The ultimate product of realization is the
software implementation of that use case

5© 2010 Bennett, McRobb and Farmer

Communication Diagram
Approach

• Analyse one use case at a time
• Identify likely classes involved (the use case

collaboration)
– These may come from a domain model

• Draw a communication diagram that fulfils the
needs of the use case

• Translate this into a use case class diagram
• Repeat for other use cases
• Assemble the use case class diagrams into a

single analysis class diagram

6© 2010 Bennett, McRobb and Farmer

Robustness Analysis

• Aims to produce set of classes robust
enough to meet requirements of a use
case

• Makes some assumptions about the
interaction:
– Assumes some class or classes are needed

to handle the user interface

– Abstracts logic of the use case away from
entity classes (that store persistent data)

7© 2010 Bennett, McRobb and Farmer

Robustness Analysis: Class
Stereotypes

• Class stereotypes differentiate the roles objects
can play:
– Boundary objects model interaction between the

system and actors (and other systems)

– Control objects co-ordinate and control other objects

– Entity objects represent information and behaviour in
the application domain

– Entity classes may be imported from domain model

– Boundary and control classes are more likely to be
unique to one application

8© 2010 Bennett, McRobb and Farmer

Boundary Class Stereotype

• Boundary classes represent interaction with the
user - likely to be unique to the use case but
inherited from a library

• Alternative notations:

User Interface::AddAdvertUI

User Interface::AddAdvertUI

startInterface()
assignStaff()
selectClient()
selectCampaign()

<<boundary>>
User Interface::AddAdvertUI

startInterface()
assignStaff()
selectClient()
selectCampaign()

9© 2010 Bennett, McRobb and Farmer

Entity Class Stereotype

• Entity classes represent persistent data
and common behaviour likely to be used in
more than one application system

• Alternative notations :

Campaign

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

<<entity>>
Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

10© 2010 Bennett, McRobb and Farmer

Control Class Stereotype

• Control classes encapsulate unique
behaviour of a use case

• Specific logic kept separate from the
common behaviour of entity classes

• Alternative notations:

AddAvert

Control::AddAdvert

showClientCampaigns()
showCampaignAdverts()
createNewAdvert()

<<control>>
Control::AddAdvert

showClientCampaigns()
showCampaignAdverts()

createNewAdvert()

11© 2010 Bennett, McRobb and Farmer

Use Case and Collaboration

Campaign
Manager

Add a new advert to
a campaign

<<realize>>Add a new
advert to a
campaign

Add a new
advert to a
campaign

12© 2010 Bennett, McRobb and Farmer

A Possible Collaboration

Add a new advert to a campaign

:Advert

:Campaign

:Client

:AddAdvert:AddAdvertUI

13© 2010 Bennett, McRobb and Farmer

Early Draft Communication
Diagram

14© 2010 Bennett, McRobb and Farmer

More Developed
Communication Diagram

15© 2010 Bennett, McRobb and Farmer

Resulting Class Diagram

Advert

setCompleted()
createNewAdvert()

«entity»

User Interface::AddAdvertUI

startInterface()
createNewAdvert()
selectClient()
selectCampaign()

«boundary»

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

«entity»

1 0..*

conducted by

Client

companyAddress
companyName
companyTelephone
companyFax
companyEmail

getClientCampaigns()
getClients()

«entity»

1 0..*

places

Control::AddAdvert

showClientCampaigns()
showCampaignAdverts()
createNewAdvert()

«control»

16© 2010 Bennett, McRobb and Farmer

Reasonability Checks for
Candidate Classes

• A number of tests help to check whether a
candidate class is reasonable
– Is it beyond the scope of the system?

– Does it refer to the system as a whole?

– Does it duplicate another class?

– Is it too vague?

(More on next slide)

17© 2010 Bennett, McRobb and Farmer

Reasonability Checks for
Candidate Classes (cont’d)

– Is it too tied up with physical inputs and
outputs?

– Is it really an attribute?

– Is it really an operation?

– Is it really an association?

• If any answer is ‘Yes’, consider modelling
the potential class in some other way (or
do not model it at all)

18© 2010 Bennett, McRobb and Farmer

CRC Cards

• Class–Responsibility–Collaboration cards help
to model interaction between objects

• Used as a way of:
– Identifying classes that participate in a scenario
– Allocating responsibilities - both operations and

attributes (what can I do? and what do I know?)

• For a given scenario (or use case):
– Brainstorm the objects
– Allocate to team members
– Role play the interaction

19© 2010 Bennett, McRobb and Farmer

CRC Cards

Class Name:

CollaborationsResponsibilities

Responsibilities of a class
are listed in this section.

Collaborations with other
classes are listed here,
together with a brief
description of the purpose
of the collaboration.

20© 2010 Bennett, McRobb and Farmer

Class Name Client
Responsibilities Collaborations

Provide client
information.

Campaign provides
campaign details.

Class Name Campaign

Responsibilities Collaborations

Provide campaign
information.
Provide list of adverts.
Add a new advert.

Advert provides advert details.
Advert constructs new object.

Class Name Advert

Responsibilities Collaborations

Provide advert details.

Construct adverts.

Provide list of
campaigns.

21© 2010 Bennett, McRobb and Farmer

CRC Cards

• Effective role play depends on an explicit
strategy for distributing responsibility
among classes

• For example:
– Each role player tries to be lazy
– Persuades other players their class should

accept responsibility for a given task

• May use ‘Paper CASE’ to document the
associations and links

22© 2010 Bennett, McRobb and Farmer

Assembling the Class Diagram

• However individual use cases are
analysed, the aim is to produce a single
analysis class diagram

• This models the application as a whole

• The concept is simple:
– A class in the analysis model needs all the

details required for that class in each separate
use case

23© 2010 Bennett, McRobb and Farmer

(b) Campaign class that
meets the needs of
Assign staff to work
on a campaign

(a) Campaign class that
meets the needs of Add new
advert to a campaign

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts ()
addNewAdvert ()

(d) A more fully
developed Campaign
class meets the
requirements of these
and several other use
cases too

Campaign

title

campaignStartDate
campaignFinishDate

estimatedCost

completionDate
datePaid

actualCost

getCampaignAdverts ()

addNewAdvert ()

createNewCampaign ()

getCampaignStaff ()

assignStaff ()
completeCampaign ()

getCampaignCost ()

recordPayment ()

<<entity>>

(c) Campaign class
that meets the needs
of both use cases

Campaign

getCampaignStaff ()

assignStaff ()

<<entity>>

getCampaignAdverts ()

addNewAdvert ()

title
campaignStartDate
campaignFinishDate

Campaign

getCampaignStaff ()
assignStaff ()

<<entity>>

title
campaignStartDate
campaignFinishDate

24© 2010 Bennett, McRobb and Farmer

25© 2010 Bennett, McRobb and Farmer

Summary

In this lecture you have learned:
• What is meant by use case realization

• How to realize use cases with robustness
analysis and communication diagrams

• How the CRC technique helps identify
classes and allocate responsibilities

• How to assemble the analysis class
diagram

26© 2010 Bennett, McRobb and Farmer

References

• Wirfs-Brock (1990) gives a good
exposition of CRC cards
(For full bibliographic details, see Bennett,
McRobb and Farmer)

